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• Introduction

This  document  compares  the properties  and usage of  the normal  and Modified Allan deviations  as
stability measures for a frequency source.  These statistics are well-known alternatives to the standard
deviation for devices having divergent power law noise1, but their characteristics and applicability are
not always well understood.

As  a  first  example,  the  Figure  1  composite
stability  plot  shows  the  normal  and  modified
Allan deviations (ADEV and MDEV) for 10,000
points of simulated W PM noise having a stability
of  y(=1s) = 1x10-11.  Their log-log slopes are
-1.0 and -1.5 respectively2.

A good starting point for studying the relationship
between the Allan and Modified Allan variances
is Section A.6 on Page TN-9 of Reference [1].  In
particular, the two excerpts from that information
copied  below as  Figures  14 and 15 allow easy
comparison and conversion between AVAR and
MVAR.  Mod y() is always smaller than y(),
particularly  for  white  and  flicker  PM  noise.
MDEV thus provides effective filtration for those
noises, an advantage for some measurements but
which can also underestimate source instability.

Figure 1.  ADEV and MDEV for W PM Noise

The ratio R(n) = MVAR/AVAR as a function of averaging
factor n =  /0  for W PM noise = 1/n (see Fig. 15), as seen
above by their x10 deviation ratio at =102 s.  Notice also the
wider MDEV error bars.

Roughly speaking,  MDEV is  similar  to  ADEV for  white,  flicker  and random walk  FM noise,  and
decreases more rapidly versus averaging factor for flicker and white PM noise.  MDEV is equal to
ADEV at the basic sampling interval, 0, and is always smaller than ADEV for averaging factors greater
than 1.  It is much less widely used than ADEV, mainly to distinguish between those PM noise types,
and indirectly as the basis of the time deviation, TDEV.  Most stability specifications are in terms of
ADEV, which is somewhat faster to calculate and has somewhat higher confidence.  MDEV usage is
highest in the timing and telecom fields.

1 The noise of frequency sources is commonly modeled by five power law spectral density terms, h f, where the Fourier
frequency exponent, , ranges from -2 to +2 corresponding to the random walk FM, flicker FM, white FM, flicker PM and
white PM noise types, where the =-2 and -1 terms display non-convergent standard deviations (see Sections 3.2 and 5.2.1 of
Reference [14]).  See Appendix 1.
2 This figure and many of the other stability plots in this paper were generated by the Stable32 program for frequency
stability analysis which is freely available from the IEEE UFFC.
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• ADEV

The Allan deviation, y() or ADEV, introduced in 1966 in Reference [7], is the most commonly-used
time domain measure for frequency stability, and, as such, we assume that it is familiar to the reader.  To
briefly review, it was developed as an alternative to the standard deviation,  , because latter does not
converge  to  a  consistent  value  for  the  flicker  and  even  more  divergent  FM noise  processes  often
associated with frequency sources.  ADEV uses 1st differences of frequency instead of the frequency
average.   The subscript  y  in  the  symbol  for  the ADEV denotes  dimensionless  fractional  frequency
stability,  y(t) =   (f(t) - fo) / fo, and its  dependence indicates that it is a function of the averaging time
associated with the analysis.  Phase fluctuations, in units of seconds, are denoted by x(t).  Frequency is
the rate of change of phase, y(t) = dx(t) / dt.  Please see [11], [14], [19], [20], [25], [35], or other similar
references for definitions and basic information about frequency stability analysis and power-law noise
models.

Keeping  in  mind  the  distinction  between  a  statistic  and  its  estimator,  one  can  calculate  the  Allan
deviation via several methods, e.g., its original naive estimator, the preferable fully-overlapping ADEV
formula, or more elaborately by other, possibly biased, estimators such as the Total or Thêo1 deviations.
The latter methods, although involving more complicated formulae, have the advantage of providing
higher confidence and results at longer averaging factors.

 Non-Overlapping Allan Variance
The Allan,  or  2-sample  variance,  AVAR,  is  the  most  common time  domain  measure  of  frequency
stability.  Its non-overlapping version is defined as:
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 This  original  estimator  of  the  2-sample  or  Allan  variance
closely resembles  its definition using the 1st differences of
the fractional frequency variations.

(1)

where yi is the ith of M fractional frequency values averaged over the measurement interval .

In terms of phase data, the Allan variance may be calculated as:
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 This is the same AVAR estimator as Eq. (1) using the 2nd

differences of the phase variations. (2)

where xi is the ith of the N = M+1 phase values spaced by the measurement interval .

The result is usually expressed as its square root, y(), the Allan deviation, ADEV.  The Allan variance
has the same expected value as the ordinary variance for white FM noise, but has the advantage, for
more divergent noise types such as flicker FM noise, of converging to a value that is not dependent on
the number of data points.  The confidence interval of an Allan deviation estimate is also dependent on
the noise type, but is often simply estimated as ±y()/N, perhaps including a correction factor for the
noise type (see Section 5 of [19] or Section 5.3.1 of [14])3.

 Overlapping Allan Variance
The overlapping Allan variance is a version of the Allan variance, ²y(), AVAR, that makes maximum
use of a data set by forming all possible fully overlapping samples at each averaging time .  It can be

3 Even approximate error bars are better than none.  Most ADEV specifications use the nominal, not upper error bar, value. 
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estimated from a set of M frequency measurements for averaging time = m, where m is the averaging
factor and  is the basic measurement interval, by the expression:
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This fully-overlapping estimator of the 2-sample or Allan 
variance using the 1st differences of the fractional frequency 
variations has higher confidence than that of Eq. (1).

(3)

In terms of phase data, the overlapping Allan variance can be estimated from a set of N = M+1 time
measurements as:
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 This is the same AVAR estimator as Eq. (3) using the 2nd 
differences of the phase variations. (4)

The result is usually expressed as the square root,  y(), the Allan deviation, ADEV. The confidence
interval  of  an  overlapping  Allan  deviation  estimate  is  better  than  that  of  a  non-overlapping  Allan
variance estimation because, even though the additional overlapping differences are not all statistically
independent,  they  nevertheless  increase  the  number  of  degrees  of  freedom  and  thus  improve  the
confidence in the estimation.  Analytical methods are available for calculating the number of degrees of
freedom for an overlapping Allan variance estimation, and for using that to establish single or double-
sided  confidence  intervals  for  the  estimate  with  a  certain  confidence  factor,  based  on  Chi-squared
statistics (see Section 5 of [19] or Section 5.3.2 of [14]).

Sample variances are distributed according to the expression:

2

2
2




sdf 
  . (5)

where ² is the Chi-square, s² is the sample variance, ² is the true variance, and df is the # of degrees of
freedom (not necessarily an integer).  The df is determined by the # of data points and the noise type.  

Herein, ADEV generally refers to any of these Allan deviation estimators, but most specifically to the
fully-overlapping method, preferably using phase data. 

• MDEV

The  Modified  Allan  variance,  Mod  y
()  or  MVAR,  introduced  in  1981  in  Reference  [8],  is  an

alternative to the normal Allan variance that includes phase averaging in its estimation process.  The
phase averaging varies the analysis bandwidth, dividing it by the averaging factor, n, by averaging n
adjacent phase samples.  MVAR equals AVAR at unity averaging factor and is smaller at all larger ones.
The  addition  filtering  makes  MDEV  independent  of  the  measuring  system  bandwidth  under  most
conditions4.

The MDEV is used mainly to distinguish between white and flicker PM noise, as shown in Figures 1
and 2-3, and serves as the basis of the time deviation, TDEV.  As such, MDEV is particularly useful for
analyzing  frequency  sources  like  crystal  oscillators  and  active  H  masers.  It  is  slightly  more
4 The relationships between phase noise type and level, ADEV and MDEV values, measurement tau (0), averaging factor 
and system bandwidth can be explored with the Stable32 Domain function.  For example, one can use constant values of PSD
Type, Carrier Freq, SB Freq, Carrier Freq and W or F PM noise, and observe the variation in ADEV or MDEV versus 
analysis tau (=0AF) and/or BW factor.  One will notice that, for W PM, ADEV varies with AF for the same analysis tau 
and other parameters while MDEV does not, and that MDEV is independent of the system upper cutoff frequency, fh.
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computationally intensive and has somewhat less confidence than ADEV.  Note that the ADEV white
and flicker F PM noise slopes are both about -1.0 while they are -1.5 and -1.0 respectively for MDEV.
MDEV can also be used to suppress instrumental white PM noise in an FM noise analysis (see Fig. 6).

The modified Allan variance, Mod ²y(), MVAR, is estimated from a set of M frequency measurements
for averaging time =m, where m is the averaging factor and  is the basic measurement interval, by
the expression:
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MDEV is proportional to the 1st difference 
of the fractional frequency variations 
averaged over m adjacent samples.

(6)

Because of the triple-nested nature of this expression, it is better to perform an MVAR calculation with
phase data, especially for a run over multiple averaging factors.

In  terms  of  phase  data,  the  modified  Allan  variance  is  estimated  from  a  set  of  N  =  M+1  time
measurements as:
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averaged over tau.

(7)

There is a recursive algorithm for this estimator that speeds up its computation, see [13].  The result is
usually expressed as the square root, MDEV or Mod y(), the modified Allan deviation.  The modified
Allan variance is the same as the normal Allan variance for m = 1.  It includes an additional phase
averaging  operation,  the  m-point  moving  average  i summations  in  Eqs.  (6)  and  (7),  and  has  the
advantage of being able to distinguish between white and flicker PM noise.  The edf and confidence
interval of a modified Allan deviation determination are also dependent on the noise type [18], and can
also set simply as ±Mod y(t)/N, including a noise correction factor, or by Chi-squared statistics.

Figures 2-5 show examples of MDEV and ADEV plots for white and flicker PM noise.
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Figure 2.  MDEV for W PM Noise
Log-Log Slope=-1.5

Figure 3.  MDEV for F PM Noise
Log-Log Slope=-1.0

Figure 4 ADEV for W PM Noise
Log-Log Slope=-1.0

Figure 5 ADEV for F PM Noise
Log-Log Slope=-1.0

Quoting from Reference [9]:

ADEV should be used in preference to MVAR for most purposes, especially for  < +1, but it can be a
valuable analytical tool for distinguishing white and flicker PM noise ( = -2 and -1), and, along with
TDEV, for analyzing the stability of time sources and distribution systems [5].
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As  an  example  of  the  ability  of  MDEV  to
suppress white PM noise contamination, consider
the ADEV and MDEV stability plots of Figure 6
for the combination of W FM noise at a simulated
level  of  1e-11  at  1s  (say  from  a  rubidium
frequency standard under test) plus W PM noise
at a higher level of 5e-11 at 1s (say from the noise
floor  of  a  clock  measurement  system).   The
objective is to determine the level of the RFS W
FM noise (shown by the green line).  The usual
way would be to fit a W FM line to the ADEV
results where the slope is -1/2, say at 1000s.  This
gives  the  correct  result.   But  notice  that  the
MDEV plot reaches the W FM slope much faster,
say at 50s, and the R(n) ratio can then be used to
obtain an ADEV estimate of 1e-12/0.5=1.4e-12,
in good agreement  with the direct ADEV value
but 20x faster.

Figure 6.  ADEV and MDEV Stability Plots for
y()=1x10-11-1/2 W FM RFS Noise Contaminated

with y()=5x10-11-1W PM Instrumental Noise

• TDEV

The  Modified  Allan  variance,  Mod  y
()  or

MVAR is also the basis of the Time variance and
its deviation, TDEV.  TVAR is a measure of time
stability and is defined as [15], [16], [17]:

)()3/()( 222  yx Mod . (8)

TVAR is  equal  to  the  standard  variance  of  the
time deviations for white PM noise.  Its square
root,  TDEV  is  MDEV  with  a  log-log  slope
transposed by +1 and scaled by  3.  Because of
that  simple  relationship,  one  can  show  loci  of
constant TDEV on an MDEV plot as shown in
Figure 7.

Figure 7.  MDEV Plot with TDEV Loci

TDEV is commonly used to characterize the time error of a time source (clock), or telecommunications
or distribution system [12], [33].  It makes sense to specify the requirements of a timing system in terms
of TDEV, especially one for which there is a critical time interval such as a GPS satellite clock with 1-
day updates5.
The time error of a clock, T, is the sum of the effects of initial time synchronization offset, T0, initial
frequency  syntonization  offset,  f/f,  subsequent  frequency  drift  caused  by  internal  aging  and
environmental sensitivity, D, and stochastic time variations, x.

5 What ADEV is required for a 1-day TDEV = 1 ns resulting from the W FM noise of an atomic clock?  The corresponding
MDEV is sqrt(3e-18/86,4002) = 2.00e-14 at 1-day.  R(n) (see Fig. 14) for W FM noise is 0.5, so ADEV is 2.00e-13/0.5 =
2.84e-14 at 1-day and the required clock stability is y() ≤ 8.34e-12 -1/2.  A Stable32 simulation will confirm this.
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The deterministic time error due to frequency offset integrates linearly and that caused by frequency
drift integrates quadratically.  The effect of environmental sensitivities can be quite complex depending
on when and how they occur.  TDEV describes the stochastic time error.  The overall time error thus
depends on how these various mechanisms combine.  The resulting error budget is more complex for a
moderate-performance source in a tactical  environment than for a high-stability device under benign
conditions.   The  overall  system  may  have  means  for  initial  synchronization  and  periodic
resynchronization, and those provisions may have their own error considerations.  In the long run, clock
reliability may be the most important factor6.  A multiple-clock ensemble can improve both reliability
and performance7.

• Sigma-Tau Plots

Sigma-Tau plots for ADEV, MDEV and TDEV show the different white and flicker PM noise slopes for
the former two, and the +1 slope translation for TDEV.  The generic plots of Figures 8-10 show the
general trend of increasing slope versus longer averaging time, and the dominance of PM noise in the
short term, FM noise in the medium term, and frequency drift at long term.
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Figure 8.  ADEV Sigma-Tau Diagram Figure 9.  MDEV Sigma-Tau Diagram

6 A clock must obviously run continuously, and that is sometimes the distinction between a clock and a frequency standard.
7 The stability of a clock ensemble can exceed that of its individual members.
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Sigma-Tau  diagrams,  log-log  plots  of  ADEV,
MDEV, or TDEV versus averaging time, tau, are
the  most  common  way  to  show  time  domain
frequency stability.  In most cases, an ADEV plot
is  preferred.   For  crystal  oscillators,  active  H-
masers  and other  devices  where  PM noise is  of
particular  interest,  a MDEV plot  can distinguish
between  white  and  flicker  PM  noise.   Passive
atomic clocks are usually dominated by white and
flicker FM noise.  Most frequency sources show
frequency  drift  at  long  term.   A  TDEV  plot  is
often the best way to show the time stability of a
timing source or time distribution system.
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Figure 10.  TDEV Sigma-Tau Diagram

Real  data will  seldom have all  slopes and may not show them, so clearly so it  will  not always  be
possible to identify the noise type easily, but it is often effective to fit regions of a sigma-taw plot to a
specific power law slope.  Other non-graphical methods exist for determining the dominant power-law
noise type from a set of phase or frequency data [31].

• ADEV and MDEV Plots

A Set of dual ADEV and MDEV plots for white, flicker and random walk FM noise are shown in Figure
11, along with their expected and actual R(n) differences at an averaging factor of n=128.

ADEV @ AF=128: 8.9601e-13
MDEV @ AF=128: 6.3769e-13
W FM =0 expected R(128) = 0.500
Actual R(128) = (6.3769/8.9601)2 =  0.506
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ADEV @ AF=8.4431e-12
MDEV @ AF=6.7010e-12
F FM =-1 expected R(128) = 0.575
Actual R(128) = (6.7010/8.4431)2 = 0.630

ADEV @ AF=128: 1.1686e-10
MDEV @ AF=128: 1.0489e-10
RW FM =-20 expected R(128) = 0.825
Actual R(128) = (1.0489/1.1686)2 =  0.806

Figure 11.  Dual ADEV/MDEV Plots for White, Flicker, and Random Walk FM Noise

The actual R(n) values are in good agreement with those expected.

Figure 12 shows a set of ADEV and MDEV plots for various power law noise types from Reference [6]
(plus Hadamard variance, HDEV, plots that can be ignored for our present purposes, although it is worth
noting that there is also a modified version of it also).

Figure 13 also shows a set of ADEV, MDEV, and TDEV plots for various power law noise types,
plotted together.
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Figure 12.  ADEV and MDEV Plots for Various Noise Types (From [6])
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Figure 13.  Allan, Modified Allan, and Time Deviation Stability Plots for 105 Points of Simulated RW
FM (Blue lines, a=-2), F FM (Magenta lines, a=-1), W FM (Green lines, a=0), F PM (Red lines, a=1),
and W PM (Cyan  lines,  a=2) Power  Law Noise.  Noise  generated  by  Stable32,  plots  produced by
TimeLab.  From: leapsecond.com.

11

http://www.leapsecond.com/pages/adev-fm/
http://www.ke5fx.com/timelab/readme.htm
https://ieee-uffc.org/frequency-control/frequency-control-software/stable-32/


In Figure 12, the linear ADEV (blue) and MDEV (green) plots for the pure power law noise types from
W PM, F PM. W FM. F FM, and RW FM show a progression of variations from the MDEV lines having
a significantly steeper negative slope to lines where the two statistics essentially overlap.  Most of all,
these plots show the ability of the MDEV slope to distinguish between white and flicker PM noise.
They also show that the MDEV values lie below ( x0.707)  the corresponding ADEV values for white
FM noise, somewhat below ( x0.822) for flicker FM noise and slightly below ( x0.908) for random
walk FM noise.  ADEV and MDEV are both equally sensitive to linear frequency drift.

• The R(n) Bias Function

The R(n) bias  function is  the ratio  of the Modified Allan variance,  MVAR, to the Allan Variance,
AVAR (these variances are, of course, equal to the squares of their corresponding deviations).  It is a
function of the averaging factor, n=/0, and the power law noise type.

For flicker and white PM noise (a≥1), Mod y() depends on t0, e.g., Mod y(10n, ) = √10Mod y(n,
10).  The effect of white and flicker PM noise on a measurement of the average frequency can be
eliminated by making t0 small and/or n large.  See Rutman & Walls 1991 [2].

The following Figures 14 and 15 showing the R(n) bias function are from NIST Technical Note 1337,
Characterization of Clocks and Oscillators, February 1990 [1].  Section A.6 of that document contains
much useful information about the relationship between ADEV and MDEV.
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Figure 14.  R(n) Table for Various Noise Types (From [1])
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Figure 15.  R(n) Plot for Various Noise Types (From [1])

Analytical expressions for R(n) for the various power law noise types are shown in the table of Figure
16 from Reference [4].  The values for RW FM (=-2), F FM (=-1), and W FM (=0) are 0.825, 0.675
and 0.500 respectively for averaging factors, n, greater than about 10.  R(n) is equal to 1/n for white PM
(=2) noise.  The R(n) expression for flicker PM noise (=1) is more complex and depends on the
system bandwidth.  Note that the corrected values for F FM (=-1) above are slightly different than in
the table below.  For F PM (=1) the R() limit (see [10]) is 1.124/ln(h).  Note also that the symbols
m and af or AF are also commonly used for the averaging factor, n.  Note also that R() is independent
of the system bandwidth, h=2fh, for W PM (=2).
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For F PM (=-1) noise simulated in Stable32 [32],  where the equivalent  bandwidth is  equal  to the
Nyquist frequency (20)-1,  0=, and the top R(n) line applies, we would expect a value of R(128) 
0.178 to apply8.  If we compare Figures 3 and 5 at AF=128, we find MVAR/AVAR = (6.67e-14/1.62e-
13)2 = 0.170, in good agreement with that expected.

One  can  expect  considerable  fluctuation  between  ADEV  and  MDEV  stability  plots  for  real  data
especially at longer averaging factors.

Figure 16.  Analytical Expressions for R(n) (From [4])

The original 1981 Allan and Barnes MVAR paper [5] contained an empirical expression for R(n)9, and
this table from the 1984 Lesage and Ayi MVAR paper [4] contains analytical expressions for it10.  Those
results are superseded in part by those of Reference [1] as shown in Figures 9 and 10 and the discussion
in its Section A.6.  Additional expressions regarding ADEV and MDEV are shown in Figure 17.

8 One therefore cannot see the F FM dependence on system hardware bandwidth. 
9 See the errata note #34 in [1]. 
10 See the correction for = -1 in Section A.6 of [1].
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Figure 17.  AVAR and MVAR Expressions (From [34])

In particular,  see the expressions for White  PN through RW FN.  Note that  the b terms are more
commonly denoted as h.

Per [3] and [15], MDEV is independent of the averaging factor, n, for n greater than some minimum
value that depends on the noise type(s).

• Sampling Functions

The sampling functions associated with ADEV and MDEV calculations that determine their spectral
properties (i.e., frequency domain filtration) are shown in Figures 18 and 19 respectively.
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Figure 18.  AVAR Sampling Function and Frequency Response (From [36])

Figure 19. Impulse Response of the MVAR Sampling Function (for n=6) (From [8])
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The  frequency  response  of  AVAR,  shown  in
Figure 20, determined by the Fourier transform of
its  sampling  function,  looks  like  a  half-octave-
wide bandpass filter. The peak in the response is at
f  =  0.5/τ0,  where  f  is  a  Fourier  component  of
fractional  frequency  deviation  y(t)  and  τ0 is  the
basic  sampling  time  of  the  frequency  data.
Because  there  is  considerable  energy  in  the
sidelobes (the 2nd

 one is  only about  -10 dB) one
should not restrict the measurement bandwidth to
less  than  about  x2  the  peak  response,  or  about
(τ0)-1.

Figure 20 AVAR Filter Response (From [23])

• Transfer Functions

AVAR and MVAR transfer functions are shown in Figures 21 and 22.

The ADEV has a frequency domain transfer function of:
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Figure 21.  AVAR and MVAR Transfer Functions
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The MDEV has a frequency domain transfer function of:
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The fairly narrow AVAR and MVAR spectral responses allow them to serve as a means of spectral
analysis,  enabling  them to  resolve  periodic  frequency  fluctuations  (see  Figure  12  bottom left,  and
Sections 11.4 and 11.5 of [14]).  AVAR/MVAR analyses are typically run over a range of octave-spaced
averaging times, and their composite spectral response is quasi-rectangular as shown in Figures 23 and
24 [9], [16].

Figure 23.  AVAR Octave-Spaced Composite
Transfer Function

Figure 24.  MVAR Octave-Spaced Composite
Transfer Function
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• Frequency Domain Expressions

ADEV and MDEV can be expressed in the frequency domain in terms of the spectral density of the
fractional frequency fluctuations, Sy(f) as follows (see [2]):
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These integrals  show the additional  filtration provided by MVAR.  They can be used in numerical
calculations to determine ADEV and MDEV from frequency domain (spectral) measurements (see [3]).
The upper integration limits are set by the system bandwidth, fh.  These expressions are thus the basis for
time-frequency domain conversions.

• Domain Conversions

Conversions  between  time  (e.g.,  ADEV,  MDEV)  and  frequency  domain  (e.g.,  Sy(f),  L(f))  stability
measurers  are  possible  via  these  integrals  either  by numerical  integration  [31]  or  power  law noise
relationships (see Section 7 of [14] or Annex 1, Section 4 of [19]).  The Stable32 Domain function
supports those conversions.

• ADEV and MDEV Confidence Limits

ADEV and MDEV results should include an indication of their confidence limits, e.g., error bars on a
stability  plot.   Setting  those  bounds  (the  variance  of  a  variance)  involves  Chi-squared  statistical
methodology, which depend on the variance type (AVAR or MVAR), dominant power-law noise type
(W PM through RW FM), the number of analysis data points, and the desired confidence factor (e.g., 1-
sigma, 68%).  Doing so requires a means for determining the number of Chi-squared equivalent degrees
of  freedom (edf)  for  the  particular  variance  type,  noise  type,  and number  of  data  points.   That  is
basically a three-step process, estimating the power law noise type and then the df, and finally setting
the confidence limits.

Several  methods  are  available  for  power-law  noise  identification  (see  Section  5.5  of  [14]).   A
particularly effective way is via the lag 1 autocorrelation function, r1, applied to the phase or frequency
data (see [31]).

Sample variances are distributed according to the expression:

2

2
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
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where ² is the Chi-square, s² is the sample variance, ² is the true variance, and edf is the # of degrees
of  freedom (not necessarily an integer).  Double-sided confidence limits are then set with:
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where p is the one-half of the desired confidence factor.  Single-sided confidence limits can be set with
the 2nd expression only and 2p 11.

• Frequency Stability Measurements

A canonical frequency measurement is made with a frequency counter having adequate resolution, zero
dead-time, and an accurate and stable reference.  A canonical phase measurement would be made with a
time interval counter with those attributes.  In practice,  a variety of devices and systems have been
devised for those purposes, with phase measurements generally being preferred.  The resulting data is
normally unprocessed and unfiltered (although the measuring system may impose a bandwidth limit),
and is suitable for whatever analysis may follow.  However it is possible that the system may perform
some sort of phase averaging as a means for noise reduction, and, in that case, the resulting data may
resemble an MVAR process12.  Increasingly, such processing may be hidden in internal firmware13.

• Dead Time

Dead time can be a problem when analyzing discontinuous frequency measurements when the spacing
between them is a significant fraction of the measurement interval (this issue does not apply to phase
measurements) [27].  The extent of the effect of dead time on an ADEV analysis also depends on the
dominant power law noise type, with the least effect for white FM noise (=0) and the most effect when
 most differs from 0 (white PM and random walk FM noise).  Dead time can have a significant effect
on the ADEV results.

Dead time between measurements is quite common in frequency measurements made with an ordinary
frequency counter because of the delay caused by the counter between successive measurements.  Dead
time can also occur as the result of a deliberate wait between measurements (e.g. one  = 100 second
measurement made once per hour). Dead time that occurs at the end of a measurement can be corrected
for in an Allan deviation determination by using the Barnes B2 bias function [28], the ratio of the 2-
sample variance with dead time ratio r = T/ to the 2-sample variance without dead time. Otherwise,
without this correction, one can only determine the average frequency and its drift. When such data are

11 The Stable32 Sigma function can serve as an example for setting ADEV/MDEV error bars.  A set of the desired power-law
noise can be generated with the Noise function, and single or double-sided confidence limits can be established at a certain
confidence factor.  The corresponding edf and 2 parameters are shown.
12 A classical or so-called  counter (conventional, reciprocating or interpolating) makes a frequency measurement averaged
over the measurement interval, equivalent to two phase samples at the beginning and end, a counter makes multiple phase
measurements at overlapping samples over the measurement interval, and a   counter uses a linear regression applied to
multiple phase samples. The Greek letter names resemble the shapes of their respective phase sampling functions. They have
Allan (AVAR), Modified (MVAR) and Quadratic (QVAR) variance responses at their basic measurement intervals.
13 Firmware for a DMTD clock measuring system developed by the author had optional phase averaging that displayed this
behavior: MDEV response at  , mixed MDEV/ADEV response at small averaging factors, and ADEV response when the
data were averaged to a longer tau.  The noise floor was lowered and the short-term residual noise type was changed.  This
can be quite confusing, and one cannot measure ADEV at no/little averaging.  But phase averaging does reduce a counter’s
internal W PM noise for ordinary average frequency measurements.

21



used to form frequency averages at longer tau, it is necessary to also use the B3 bias function [29], the
ratio of the variance with distributed dead time to the variance with all the dead time at the end. Those
bias corrections are made using the product of B2 and B3. The power law noise type must be known in
order to calculate these bias functions. Simulated periodically sampled frequency data with distributed
dead time for various power law noise processes shows significant bias without, and good agreement
with,  the  B2 and B3 bias  function  corrections,  as  shown in  Figures  25 and 26.   These  dead time
corrections apply only to the ADEV.

Figure 25.  Deadtime correction for W PM noise Figure 26.  Deadtime correction for RW FM noise

Frequency stability plots with large measurement dead time (r = T/ = 36) for W PM and RW FM noise.  Simulated data 
sampled for  = 100 seconds once per hour for 10 days.  Nominal 1x10-11 stability at  = 100 seconds shown by green lines.  
Plots show stability of simulated data sets for Continuous, Sampled and Dead Time-Corrected data.

• ADEV and MDEV Measurements

Phase or frequency measurements to support an ADEV or MDEV analysis can be made with a variety of
instruments including frequency or time interval counters, dual mixer time difference (DMTD) systems,
and RF sampling  techniques  [21].   These instruments  produce streams of phase or frequency data,
preferably the former, with timetags, suitable for an ADEV or MDEV analysis using either x(t) phase in
seconds or y(t) dimensionless fractional frequency [22].  Be aware that some counters (so-called lamba
 counters that have a triangular weighting function by using multiple overlapping phase samples) use
internal phase averaging for noise reduction that distorts subsequent ADEV analysis14 [24].  An ADEV
measurement is highly dependent on the system bandwidth for the case of white PM noise, less so for
flicker PM noise.  In the case of flicker PM noise, spectral aliasing can produce a spurious white PM
noise component, but the ADEV results will be correct [23].

14 A frequency counter measures the input frequency averaged over a time  versus the reference clock. Higher resolution
can be obtained by interpolation. Lower white PM noise can be obtained by averaging multiple overlapped measurements.
But if such data is analyzed by an ADEV estimator, the result resembles that for a MDEV analysis.  However if the data are
averaged sufficiently to a longer tau, one obtains the expected ADEV response. This behavior can lead to misinterpretation.
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A block diagram showing the ADEV or MDEV measurement  process is shown in Figure 27.  The
source frequency fluctuations y(t) enter at the left and the ADEV or MDEV results are obtained at the
right.  The source hardware noise bandwidth, fh, filter can be either abrupt or tapered.  An additional
moving average filter with a radian bandwidth (2)-1 is included for MDEV.  The green block represents
the ADEV sampling function which introduces both lowpass and highpass filtration, the former also
having a bandwidth of (2)-1.  The last block is the statistical expectation operator.

Figure 27.  ADEV and MDEV Processing Block Diagram (From [34])

The bandwidth considerations for an ADEV or MDEV analysis can be divided into three categories: that
of the source hardware,  the measurement  sampling process,  and the analysis  software.   They apply
mainly to white and flicker PM noise such as exists as a dominant mechanism in certain spectral regions
of crystal oscillators (e.g., the oscillator active device above the resonator half-bandwidth, and additive
noise from the output amplifier), and active H-masers (e.g., receiver thermal noise).  PM noise can also
be contributed by the measurement system instrumentation (e.g., wideband counter input circuits) and
data quantization.

Besides the source itself, the fixed hardware bandwidth fh also depends on such factors as crystal filters
and PLL loops.  It is generally much wider than the measuring system Nyquist frequency, one-half of
the reciprocal of the sampling rate,  0.  If not, the system bandwidth will effect the measurement and
should be noted.

The measurement sampling process is thus usually subject to aliasing, and has an effect on the spectral
properties of the data, but it does not affect the total noise power or the variance [23].  In the case of W
PM noise, the sampled noise remains the same spectral type.  In the case of F PM, some of the noise
power becomes W PM, with the same total variance. 

The analysis software bandwidth is even less, one-half of the reciprocal of the analysis  for ADEV and
is further narrowed by the averaging factor by the MDEV phase averaging.
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• ADEV and MDEV Computation

ADEV and MDEV computation is  practically instantaneous when performed using phase data  with
compiled code on modern computers, even for very large (e.g., 106 point) data sets [26].  Outliers must
be  removed  before  proceeding  with  an  analysis.   It  is  generally  best  to  remove  any  deterministic
frequency drift before analyzing the stochastic noise.  Frequency offset is usually not a problem, even
with regard to the dynamic range of high stability phase data having a large frequency offset (slope).  A
sigma-tau  run  is  usually  done at  octave  or  sub-decade  (e.g.,  4  points/decade)  increments,  but  it  is
perfectly practical to show every possible averaging factor (“all tau”) or a sufficient subset of them
(“many tau”), say 500, to visually fill a plot,  Gaps in phase or frequency data may either be skipped if a
value contributes to an analysis point (and gradually averaged away), or filled with interpolated values
(the latter may lead to strange results if overdone) [27].  Error bars are usually shown, particularly for
octave or sub-decade increments, and the dominate noise type and edf must be determined point-by-
point to properly set them (see Section 5.4.1 of [14]).  The number of stability points with reasonable
confidence produced by an octave run for N data points is approximately log 2(N/4).  It is common to fit a
power law noise line to all or a portion of a sigma-tau plot.  Corrections for dead time and assumed
identical  reference noise may be wanted.  The plot may be accompanied by a table of the numeric
values, and various labels and annotations may be supported.

• Sigma-Tau Plot Fluctuations

The points on a sigma-tau plot (ADEV, MDEV, etc.),  with octave, decade, “all tau”, or “many tau”
spacing, are seldom a straight line following a power law but rather exhibit various fluctuations.  Some
of those are  simply statistical  scatter  (the variance  of  a  variance),  but  others  seem to have distinct
patterns, some of which represent information about the device under test or its environment, and others
that are artifacts of either the measurement or analysis process.

An ADEV analysis  is  a  form of  spectral  analysis  whose  properties  are  determined  by the  transfer
function of its sampling/estimation process.  This can offer valuable insight into the behavior of the
device under test, particularly its environmental sensitivity.  Examples are periodic fluctuations caused
by vibration,  temperature  cycling,  power  line  interference,  power supply ripple,  and the  like.   The
ADEV plot will show nulls at the period of the interfering signal, peaks at its half-periods, maxima
representing the peak interference amplitude,  and minima representing the undisturbed stability (see
Section 11.5 of [14]).  If the interference frequency is higher than one-half the measurement sampling
rate, one will experience aliasing and slow beat note fluctuations.

An ADEV plot will generally show a “collapse” at long averaging factors, those beyond which there are
sufficient  analysis  points  for  good  confidence.   Those  points  should  be  ignored,  and,  if  needed,
consideration should be given to using an enhanced statistic like the Total variance or Thêo1.  The
ADEV drop off is an expected property of the Chi-squared distribution that governs statistical variances.

More confusing are other quasi-periodic fluctuations [30].  Those effects can result from interference
between the ADEV sampling response and long-period divergent noise, because the number of Chi-
squared degrees of freedom is small, by data turn-on “ringing”, or because of leakage from wideband
PM noise. Those effects are independent from issues of aliasing, and the solution can again be to use the
more capable Total or Thêo1 estimators.
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• Conclusions

The following are a few of general rules for characterizing the stability of a frequency or timing source:

1. Separate the deterministic and stochastic aspects of device behavior.  For a either a frequency,
timing, or RF source, remove its frequency offset and aging, and its environmental sensitivity
and drift, before analyzing its noise per item (2).  

2. Specify or analyze the device noise in the domain and with a method that closely resembles the
requirement.  Use the ADEV for a frequency source.  Use the MDEV/TDEV for a timing source.
Use a spectral density for an RF source.  RMS jitter is an alternative for a clock, RMS phase
noise or residual FM for an oscillator.

3. The measuring system often resembles the application (e.g., a time interval counter for a timing
system, a spectrum analyzer for an RF source).  Heterodyne techniques are a common way to
enhance measuring system resolution.  Zero dead time phase measurements are preferred, even
for long-term stability runs.  Reference stability is critical.  Coherent inputs are a common way to
assess measuring system noise floor.  One should always have a good understanding about what
is inside a “black box” measuring instrument’s hardware and firmware or analysis software.

We emphasized the time domain analysis methods herein.  ADEV is generally the frequency stability
measure  of  choice,  with MDEV as a  PM noise diagnostic,  while  TDEV is generally  the best  time
stability measure. Most analysts are content to simply use the Allan deviation to characterize frequency
source stability.  Some others will use the Modified Allan deviation to resolve white/flicker PM noise
ambiguity or implicitly  in  a  time deviation determination.   Stability  analysis  software will  hide the
details for most users.  Nevertheless, it is important that all such analysts have a good understanding of
the  underlying  statistical  principles  and  ready  access  to  reference  material  when  deeper  insight  is
needed. 
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Appendix 1

Non-Convergence of the Standard Variance for Flicker and Random Walk FM Noise

This figure from Reference [35] shown the non-
convergence of the standard variance, denoted by
2(N,), for flicker FM (=-1) and random walk
FM (=-2) power law noise (see also Figure 1 of
Reference [14]).  For those divergent noise types,
the standard variance depends on the number of
samples  used for  its  estimation  while  the Allan
(and related) statistics do not.  This was the basis
for  the  development  of  the  Allan  variance,  and
was  an  important  milestone  in  the  analysis  of
frequency stability.
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